Stereochemistry abstracts

Jahyo Kang,* Tae Hyung Kim, Kyoung Han Yew and Wook Ki Lee	Tetrahedron: Asymmetry 14 (2003) 415	
i-Pr N-Pd	$Mp = 192-196^{\circ}C$ (sublimation) $i\alpha_{1}^{23} = \pm 1064$ (c = 0.25 CHCL)	
	$R_f = 0.39$ (20% Ethyl acetate/ <i>n</i> -hexane)	
CIC Ph Co Ph Ana Ph Ph Ana Ph Ph	l. calcd for C ₇₈ H ₆₆ Co ₂ N ₂ O ₂ Cl ₂ Pd ₂ : C, 61.9; H, ; N, 1.91; Found: C, 60.3; H, 4.11; N, 1.67	
$C_{78}H_{66}Co_2N_2O_2Cl_2Pd_2 \label{eq:harden}$ Di-µ-chlorobis[(η^5 -($S)$ -(R_p)-2-(2'-(4'-methylethyl)oxazolinyl) cyclopentadienyl, 1-C, 3'-N)-(η ⁴ -tetraphenylcyclobutadiene) cobalt]dipalladium	

Palakodety Radha Krishna,* B. Lavanya and G. V. M. Sharma Tetrahedron: Asymmetry 14 (2003) 419 $[\alpha]_{D}^{25} = +7.5 (c \ 0.8, CHCl_3)$ Source of chirality: asymmetric synthesis Absolute configuration: 2R,3S,4S,6R,4'S C_{20}H_{26}O_7

6-[2',2'-Dimethyl-(4'S)-1',3'-dioxolan-4'-yl]-3-methoxycarbonyloxy-2-phenyl-(2R,3S,4S,6R)-tetrahydro-2H-4-pyranyl acetate and the state of the sta

Palakodety Radha Krishna,* B. Lavanya and G. V. M. Sharma

Tetrahedron: Asymmetry 14 (2003) 419

 $[\alpha]_D^{25} = -20.5$ (c 1.0, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: 2S,3S,4R,6R,4'S

6-[2',2'-Dimethyl-(4'S)-1',3'-dioxolan-4'-yl]-3-methoxy-2-phenyl-(2S,3S,4R,6R)-tetrahydro-2H-4-pyranyl acetate and a state of the sta

Tetrahedron: Asymmetry 14 (2003) 439 Johan Granander, Richard Sott and Göran Hilmersson* Ee=99% $[\alpha]_{D}^{20} = +38.5 \ (c \ 0.96, \ CH_2Cl_2)$ Source of chirality: (S)-valine Absolute configuration: (S) C14H23NS (S)-N-Isopropyl-2-amino-3-methyl-1-thioethyl-butane

A75

Tetrahedron: Asymmetry 14 (2003) 453

D.e. >98% $[\alpha]_D = -51.0$ (*c* 0.9, CHCl₃) Source of chirality: (-)-ephedrine Absolute configuration: 3R, 4S, 2'S, 5'S, 6'R

(3R,4S,2'S,5'S,6'R)-1-(4-Methoxyphenyl)-4-phenyl-3-[(2',4',5'-trimethyl-3'-oxo-6'-phenylmorpholin-2'-yl)oxy]azetidin-2-one

Bidhan A. Shinkre, Vedavati G. Puranik, B. M. Bhawal and A. R. A. S. Deshmukh* $H_{3}C + \int_{C_{1}} \int_{C_{1}} \int_{C_{1}} \int_{C_{1}} \int_{C_{1}} \int_{C_{1}} \int_{C_{1}} \int_{C_{1}} \int_{C_{1}} \int_{C_{2}} \int_{C_{2}} H_{28}N_{2}O_{4}} D.e. >97\%$ [α]_D = -61.0 (c 1.0, CHCl₃) Source of chirality: (-)-ephedrine Absolute configuration: 3R,4S,2'S,5'S,6'R(3R,4S,2'S,5'S,6'R)-1,4-Diphenyl-3-[(2',4',5'-trimethyl-3'-oxo-6'-phenylmorpholin-2'-yl)oxy]azetidin-2-one

A76

Tetrahedron: Asymmetry 14 (2003) 453

D.e. >98% $[\alpha]_D = -189.4$ (*c* 1.4, CHCl₃) Source of chirality: (-)-ephedrine Absolute configuration: $3S_3AR_32'S_35'S_36'R$

(3S,4R,2'S,5'S,6'R)-1-(4-Methoxyphenyl)-4-phenyl-3-[(2',4',5'-trimethyl-3'-oxo-6'-phenylmorpholin-2'-yl)oxy]azetidin-2-one

Bidhan A. Shinkre, Vedavati G. Puranik, B. M. Bhawal and A. R. A. S. Deshmukh*

and A. R. A. S. Deshmukh*

HO H H Ph

(2S,5S,6R)-[(2,4,6-Trimethyl-3-oxo-6-phenylmorpholin-2-yl)oxy]acetic acid

Bidhan A. Shinkre, Vedavati G. Puranik, B. M. Bhawal

Tetrahedron: Asymmetry 14 (2003) 453

D.e. >97% $[\alpha]_{\rm D} = -64.9 \ (c \ 0.9, \ {\rm CHCl}_3)$ Source of chirality: (-)-ephedrine Absolute configuration: 2S,5S,6R

D.e. >99% $[\alpha]_{\rm D} = +180.0 \ (c \ 0.4, \ {\rm CHCl}_3)$ Source of chirality: synthesis

Absolute configuration: 3R,4S

PMP $C_{16}H_{15}NO_3$

(3R,4S)-1-(4-Methoxyphenyl)-4-phenyl-3-hydroxyazetidin-2-one

Bidhan A. Shinkre, Vedavati G. Puranik, B. M. Bhawal and A. R. A. S. Deshmukh* D.e. >99% $[\alpha]_{\rm D} = -178.0 \ (c \ 0.9, \ {\rm CHCl}_3)$ H Ph HO H Source of chirality: synthesis Absolute configuration: 3S,4R **PMP** C16H15NO3 (3S,4R)-1-(4-Methoxyphenyl)-4-phenyl-3-hydroxyazetidin-2-one

Bidhan A. Shinkre, Vedavati G. Puranik, B. M. Bhawal and A. R. A. S. Deshmukh*

HO H H PMP

C₁₆H₁₅NO₃ (3S,4R)-4-(4-Methoxyphenyl)-1-phenyl-3-hydroxyazetidin-2-one Tetrahedron: Asymmetry 14 (2003) 453

D.e. >99% $[\alpha]_{\rm D} = -173.7$ (c 1.0, CHCl₃) Source of chirality: synthesis Absolute configuration: 3S,4R

Tetrahedron: Asymmetry 14 (2003) 453

Tetrahedron: Asymmetry 14 (2003) 453

Ph

Tetrahedron: Asymmetry 14 (2003) 453

D.e. >99% $[\alpha]_{D} = -179.1$ (c 2.2, CHCl₃) Source of chirality: synthesis Absolute configuration: 3S,4R

D.e. >99%

Tetrahedron: Asymmetry 14 (2003) 453

 $[\alpha]_{\rm D} = -188.4 \ (c \ 0.9, \ {\rm CHCl}_3)$ Source of chirality: synthesis Absolute configuration: 3S,4R

Tetrahedron: Asymmetry 14 (2003) 461 Tamara Danelli, Rita Annunziata, Maurizio Benaglia,* Mauro Cinquini, Franco Cozzi and Graziella Tocco Ee = 100% $[\alpha]_{D}^{23} = +3.3$ (c 0.8, CHCl₃) MeO-PEG Source of chirality: natural product PEG-supported N-(9-anthracenylmethyl)cinchoninium chloride

Tetrahedron: Asymmetry 14 (2003) 461 Tamara Danelli, Rita Annunziata, Maurizio Benaglia,* Mauro Cinquini, Franco Cozzi and Graziella Tocco Ee = 100% $[\alpha]_{D}^{23} = -3.7$ (*c* 0.15, CHCl₃) Source of chirality: natural product MeO-PEG PEG-supported quinine

HO H H Ph Ph

 $C_{15}H_{13}NO_2$ (3S,4R)-1,4-Diphenyl-3-hydroxyazetidin-2-one

Tamara Danelli, Rita Annunziata, Maurizio Benaglia,* Mauro Cinquini, Franco Cozzi and Graziella Tocco Tetrahedron: Asymmetry 14 (2003) 461

PEG-supported N-(9-anthracenylmethyl)quininium chloride

E.e. = 100%[α]_D²³ = -7.75 (*c* 0.3, CHCl₃) Source of chirality: natural product

M.-Lluïsa Bennasar,* Ester Zulaica, Yolanda Alonso and Joan Bosch $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{22} = -187 \ (c \ 1, \ CHCl_3) \\ Source \ of \ chirality: \ (S)-prolinol \\ Absolute \ configuration: \ S \end{bmatrix}$ $\begin{bmatrix} \sigma \\ D \\ D \\ C_{12}H_{16}N_{2}O_{2} \\ 3-[(2S)-(Methoxymethyl)pyrrolidinylcarbonyl]pyridine \end{bmatrix}$

Lucio Minuti,* Aldo Taticchi,* Assunta Marrocchi, Daniela Lanari Alessandra Broggi and Eszter Gacs-Baitz	i,	Tetrahedron: Asymmetry 14 (2003) 481	
Alessandra Droggi and Eszter Gats-Dallz			
	E.e. >	>99%	
	$[\alpha]_{\mathrm{D}}^{25}$	$_{D}^{25} = +346 \ (c \ 1.73, \ CHCl_{3})$	
	Source parac	rce of chirality: (S)-(+)-4-ethenyl[2.2]- acyclophane	
	Abso	lute configuration: R	
$C_{27}H_{24}O$			
(R)-(+)-2,3,8,9,11,12,12a,17a-Octahydro-17H-1,10:4,7-diethenocyclododeca[a] fluoren-17-one			

Lucio Minuti,* Aldo Taticchi,* Assunta Marrocchi, Daniela Lanari, Alessandra Broggi and Eszter Gacs-Baitz E.e. >99% $[\alpha]_{D}^{25} = +230 (c \ 0.55, CHCl_3)$

 $[\alpha]_D^{\infty} = +230$ (*c* 0.55, CHCl₃) Source of chirality: (*S*)-(+)-4-ethenyl[2.2]paracyclophane

OMe

Lucio Minuti,* Aldo Taticchi,* Assunta Marrocchi, Daniela Lanari, Alessandra Broggi and Eszter Gacs-Baitz $\begin{array}{c} \hline \\ E.e. >99\% \\ [\alpha]_D^{25} = +302 \ (c \ 0.20, \ CHCl_3) \\ Source \ of \ chirality: \ (S)-(+)-4-ethenyl[2.2]-paracyclophane \\ \hline \\ \\ (R)-(+)-14,15-Dimethoxy-2,3,8,9,11,12,12a,17a-octahydro-17H-1,10:4,7-diethenocyclododeca[a]fluoren-17-one \\ \end{array}$

Tetrahedron: Asymmetry 14 (2003) 481 Lucio Minuti,* Aldo Taticchi,* Assunta Marrocchi, Daniela Lanari, Alessandra Broggi and Eszter Gacs-Baitz E.e. >99% $[\alpha]_{D}^{25} = +1273$ (c 0.35, CHCl₃) Source of chirality: (S)-(+)-4-ethenyl[2.2]paracyclophane C27H20O (R)-(+)-2,3,8,9-Tetrahydro-17H-1,10:4,7-diethenocyclododeca[a]fluoren-17-one Tetrahedron: Asymmetry 14 (2003) 481 Lucio Minuti,* Aldo Taticchi,* Assunta Marrocchi, Daniela Lanari, Alessandra Broggi and Eszter Gacs-Baitz E.e. >99% $[\alpha]_{D}^{25} = +1314$ (c 0.16, CHCl₃) Source of chirality: (S)-(+)-4-ethenyl[2.2]-OMe paracyclophane C28H22O2 (R)-(+)-13-Methoxy-2,3,8,9-tetrahydro-17H-1,10:4,7-diethenocyclododeca[a]fluoren-17-one Tetrahedron: Asymmetry 14 (2003) 481 Lucio Minuti,* Aldo Taticchi,* Assunta Marrocchi, Daniela Lanari, Alessandra Broggi and Eszter Gacs-Baitz E.e. >99% $[\alpha]_{D}^{25} = +1093 \ (c \ 0.59, \ \text{CHCl}_{3})$ Source of chirality: (S)-(+)-4-ethenyl[2.2]paracyclophane OMe C28H22O2 (R)-(+)-14-Methoxy-2,3,8,9-tetrahydro-17*H*-1,10:4,7-diethenocyclododeca[*a*]fluoren-17-one Tetrahedron: Asymmetry 14 (2003) 481 Lucio Minuti,* Aldo Taticchi,* Assunta Marrocchi, Daniela Lanari, Alessandra Broggi and Eszter Gacs-Baitz E.e. >99% $[\alpha]_{D}^{25} = +1692$ (*c* 0.15, CHCl₃) Source of chirality: (S)-(+)-4-ethenyl[2.2]paracyclophane ОМе C28H22O2 (R)-(+)-15-Methoxy-2,3,8,9-tetrahydro-17H-1,10:4,7-diethenocyclododeca[a]fluoren-17-one

HO

Tetrahedron: Asymmetry 14 (2003) 489

 $[\alpha]_D^{20} = +55.6$ (c 0.3, CH₂Cl₂) Source of chirality: (*S*,*S*)-(+)-pseudoephedrine Absolute configuration: 2*S*,1'*S*,2'*S*

[2S]-(+)-3-(4-Methoxyphenyloxy)-2-(3,4-methylenedioxyphenyl)propanoic acid

A88

[2S]-(+)-6-Methoxy-3',4'-methylenedioxyisoflavanone

A89

Franz-J. Volk, Marita Wagner and August W. Frahm* Tetrahedron: Asymmetry 14 (2003) 497 $[\alpha]_{D}^{25} = +61.9 (c \ 0.88, \ methanol)$ Source of chirality: (R)-1-phenylethylamine Absolute configuration: $\alpha R, 1S, 2S$ $trans-(\alpha R, 1S, 2S)$ -2-Methyl-1-(1-phenylethylamino)cyclobutanecarboxamide

Franz-J. Volk, Marita Wagner and August W. Frahm* Tetrahedron: Asymmetry 14 (2003) 497 $[\alpha]_{D}^{25} = -19.3 (c \ 0.85, methanol)$ Source of chirality: (R)-1-phenylethylamine Absolute configuration: $\alpha R, 1R, 2R$ $trans-(\alpha R, 1R, 2R)-2-Methyl-1-(1-phenylethylamino)cyclobutanecarboxamide$

Franz-J. Volk, Marita Wagner and August W. Frahm* Tetrahedron: Asymmetry 14 (2003) 497 $[\alpha]_D^{25} = +2.6 (c \ 0.74, methanol)$ Source of chirality: (R)-1-phenylethylamine Absolute configuration: $\alpha R, 1R, 2S$ $c_{14}H_{20}N_2O$ $cis-(\alpha R, 1R, 2S)$ -2-Methyl-1-(1-phenylethylamino)cyclobutanecarboxamide Franz-J. Volk, Marita Wagner and August W. Frahm*

Tetrahedron: Asymmetry 14 (2003) 497

 $[\alpha]_{D}^{25} = -3.0$ (c 1.01, methanol) Source of chirality: (S)-1-phenylethylamine Absolute configuration: $\alpha S, 1S, 2R$

 $C_{14}H_{20}N_2O$ cis-(aS,1S,2R)-2-Methyl-1-(1-phenylethylamino)cyclobutanecarboxamide

H₃C

Tetrahedron: Asymmetry 14 (2003) 497 Franz-J. Volk, Marita Wagner and August W. Frahm* $[\alpha]_{D}^{25} = +86.1$ (*c* 1.02, methanol) Source of chirality: (R)-1-phenylethylamine Absolute configuration: 1S,2S C₆H₁₃ClN₂O trans-(1S,2S)-1-Amino-2-methylcyclobutanecarboxamide hydrochloride

Tetrahedron: Asymmetry 14 (2003) 497 Franz-J. Volk, Marita Wagner and August W. Frahm* $[\alpha]_{D}^{25} = -86.8$ (c 0.88, methanol) Source of chirality: (R)-1-phenylethylamine Absolute configuration: 1R,2R CI H₃N C₆H₁₃ClN₂O trans-(1R,2R)-1-Amino-2-methylcyclobutanecarboxamide hydrochloride

Tetrahedron: Asymmetry 14 (2003) 497 Franz-J. Volk, Marita Wagner and August W. Frahm* $[\alpha]_{D}^{25} = +7.1$ (c 1.03, methanol) Source of chirality: (R)-1-phenylethylamine Absolute configuration: 1R,2S CI H₂N CONH C₆H₁₃ClN₂O cis-(1R,2S)-1-Amino-2-methylcyclobutanecarboxamide hydrochloride

Franz-J. Volk, Marita Wagner and August W. Frahm* $[\alpha]_{D}^{25} = -7.4$ (c 1.02, methanol) Source of chirality: (S)-1-phenylethylamine Absolute configuration: 1S,2R CL H.I C₆H₁₃ClN₂O cis-(1S,2R)-1-Amino-2-methylcyclobutanecarboxamide hydrochloride

CI H₃N^{*} COOH C₆H₁₂ClNO₂

Franz-J. Volk, Marita Wagner and August W. Frahm*

trans-(1S,2S)-1-Amino-2-methylcyclobutanecarboxylic acid hydrochloride

Tetrahedron: Asymmetry 14 (2003) 497 Franz-J. Volk, Marita Wagner and August W. Frahm* $[\alpha]_{D}^{25} = -14.5$ (c 0.10, water) Absolute configuration: 1R,2R CI H₃N C₆H₁₂ClNO₂ trans-(1R,2R)-1-Amino-2-methylcyclobutanecarboxylic acid hydrochloride

Tetrahedron: Asymmetry 14 (2003) 497 Franz-J. Volk, Marita Wagner and August W. Frahm* $[\alpha]_{D}^{25} = +23.5$ (c 0.19, water) Source of chirality: (R)-1-phenylethylamine Absolute configuration: 1R,2S CI H₃N

C₆H₁₂ClNO₂ cis-(1R,2S)-1-Amino-2-methylcyclobutanecarboxylic acid hydrochloride

Tetrahedron: Asymmetry 14 (2003) 497

 $[\alpha]_{D}^{25} = +13.8 \ (c \ 0.11, \ water)$ Source of chirality: (R)-1-phenylethylamine Absolute configuration: 1S,2S

Source of chirality: (R)-1-phenylethylamine

Tetrahedron: Asymmetry 14 (2003) 497

Franz-J. Volk, Marita Wagner and August W. Frahm* Tetrahedron: Asymmetry 14 (2003) 497 $[\alpha]_D^{25} = -24.0 (c \ 0.09, water)$ Source of chirality: (S)-1-phenylethylamine Absolute configuration: 1S,2R $C_{6}H_{12}CINO_{2}$ cis-(1S,2R)-1-Amino-2-methylcyclobutanecarboxylic acid hydrochloride

F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* Tetrahedron: Asymmetry 14 (2003) 503

 $[\alpha]_{20}^{20} = -84.0$ (*c* 0.11, CHCl₃) Source of chirality: Sharpless' asymmetric dihydroxylation Absolute configuration: 1*R*

F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet*

F. Javier Moreno-Dorado, Francisco M. Guerra,

María J. Ortega, Eva Zubía and Guillermo M. Massanet*

Tetrahedron: Asymmetry 14 (2003) 503

 $[\alpha]_D^{20} = -47.1$ (*c* 0.07, CHCl₃) Source of chirality: Sharpless' asymmetric dihydroxylation Absolute configuration: 1*R*

 $C_{12}H_{12}O_2$ (1*R*)-1-Naphthalen-2-ylethane-1,2-diol

.OH

OН

ΩН

(1R)-1-Naphthalen-1-ylethane-1,2-diol

C12H12O2

Tetrahedron: Asymmetry 14 (2003) 503

 $[\alpha]_D^{20} = -62.7$ (*c* 0.11, CHCl₃) Source of chirality: Sharpless' asymmetric dihydroxylation Absolute configuration: 1*R*

 $C_8H_{10}O_2$ (1*R*)-1-Phenylethane-1,2-diol

Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{D}^{20} = -18.0 \ (c \ 0.35, \ CH_{3}OH)$ Source of chirality: Sharpless' asymmetric dihydroxylation CF₃ OH Absolute configuration: 2R OH. C₉H₉F₃O₂ (2R)-3,3,3-Trifluoro-2-phenylpropane-1,2-diol Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{D}^{20} = -40.2$ (*c* 0.09, CHCl₃) OTBDMS Source of chirality: Sharpless' asymmetric HO dihydroxylation Absolute configuration: 1R C18H26O2Si (1R)-2-(tert-Butyldimethylsilyloxy)-1-naphthalen-1-ylethanol Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{\rm D}^{20} = -31.9 \ (c \ 0.48, \ {\rm CHCl}_3)$ Source of chirality: Sharpless' asymmetric dihydroxylation OH .OTBDMS Absolute configuration: 1R C18H26O2Si (1R)-2-(tert-Butyldimethylsilyloxy)-1-naphthalen-2-ylethanol Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{\rm D}^{20} = -28.2 \ (c \ 0.11, \ {\rm CHCl}_3)$ Source of chirality: Sharpless' asymmetric dihydroxylation ΟН Absolute configuration: 1R OTBDMS C14H24O2Si (1R)-2-(tert-Butyldimethylsilyloxy)-1-phenylethanol A94

Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{D}^{20} = +3.0 \ (c \ 0.29, \ \text{CHCl}_{3})$ Source of chirality: Sharpless' asymmetric dihydroxylation CF₃ OMe OTBDMS Absolute configuration: 2R C16H25F3O2Si (2R)-3-(tert-Butyldimethylsilyloxy)-1,1,1-trifluoro-2-methoxy-2-phenylpropane Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{D}^{20} = -122.3$ (c 0.11, CHCl₃) OH Source of chirality: Sharpless' asymmetric MeO dihydroxylation Absolute configuration: 2RC13H14O2 (2R)-2-Methoxy-2-naphthalen-1-ylethanol Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{D}^{20} = -123.2$ (c 0.74, CHCl₃) Source of chirality: Sharpless' asymmetric dihydroxylation OMe Absolute configuration: 2R .OH C13H14O2 (2R)-2-Methoxy-2-naphthalen-2-ylethanol Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{D}^{20} = -99.0 \ (c \ 0.10, \ \text{CHCl}_{3})$ Source of chirality: Sharpless' asymmetric dihydroxylation OMe OH Absolute configuration: 2R C₉H₁₂O₂ (2R)-2-Methoxy-2-phenylethanol

Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{\rm D}^{20} = -17.9 \ (c \ 0.35, \ {\rm CHCl}_3)$ Source of chirality: Sharpless' asymmetric dihydroxylation CF3/1 OMe Absolute configuration: 2R OH. $C_{10}H_{11}F_{3}O_{2}$ (2R)-3,3,3-Trifluoro-2-methoxy-2-phenylpropanol Tetrahedron: Asymmetry 14 (2003) 503 F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* $[\alpha]_{D}^{20} = -132.6 \ (c \ 0.10, \ \text{EtOH})$ Source of chirality: Sharpless' asymmetric MeO dihydroxylation Absolute configuration: 2RC13H12O3 (2R)-a-Methoxynaphthalen-1-ylacetic acid

F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet* Tetrahedron: Asymmetry 14 (2003) 503

Tetrahedron: Asymmetry 14 (2003) 503

 $[\alpha]_{\rm D}^{20} = -133.0 \ (c \ 0.01, \ {\rm EtOH})$ Source of chirality: Sharpless' asymmetric dihydroxylation Absolute configuration: 2R

F. Javier Moreno-Dorado, Francisco M. Guerra, María J. Ortega, Eva Zubía and Guillermo M. Massanet*

> $[\alpha]_{D}^{20} = -144.0 \ (c \ 1.03, \ EtOH)$ Source of chirality: Sharpless' asymmetric dihydroxylation Absolute configuration: 2R

 $C_9H_{10}O_3$ (2R)- α -Methoxyphenylacetic acid

OH

OMe

OMe

C13H12O3

C.

óн

(2R)- α -Methoxynaphthalen-2-ylacetic acid

 $C_{40}H_{34}Fe$ 1,1'-Bis((*R*)-1,3-diphenyl-2-propenyl)ferrocene

Toshimasa Suzuka, Motoi Kawatsura, Atsushi Okada and Tamio Hayashi*

H, Ph
Ph
Ph
Cl
Ph
H
$$C_{40}H_{34}Cl_2Zr$$

1,1'-Bis((R)-1,3-diphenyl-2-propenyl)zirconocene dichloride

Tetrahedron: Asymmetry 14 (2003) 511

E.e. >99% (by preparation method) $[\alpha]_{D}^{20} = -119$ (*c* 1.0, CHCl₃) Source of chirality: chiral catalyst Absolute configuration: *R*,*R*

Toshimasa Suzuka, Motoi Kawatsura, Atsushi Okada

and Tamio Hayashi*

 $C_{40}H_{34}Cl_2Ti$ 1,1'-Bis((*R*)-1,3-diphenyl-2-propenyl)titanocene dichloride

Tetrahedron: Asymmetry 14 (2003) 511

E.e. >99% (by preparation method) $[\alpha]_{D}^{20} = +133$ (*c* 1.0, CHCl₃) Source of chirality: chiral catalyst Absolute configuration: *R*,*R*

